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A HYDRODYNAMIC MODEL OF MICROMETEROID IMPACT

INTRODU CTI ON

This is the Seventeenth Quarterly Progress Report on Project NASr-7.

The title of the project is "Shock, Flow and Radiation from the Hyper-

velocity Impact of Microparticles." The analytical and experimental

phases of this project are concerned with the phenomena that occur with

the hypervelocity impact of microparticles on a massive target, which may

be solid, or layered. The overall objective is to obtain a sufficiently

fundamental understanding of the physical mechanisms in the hypervelocity

impact of a microparticle so the momentum and the energy transferred from

the particle to the target may be ascertained and, possibly, the density

of the incident microparticle may be estimated.

This Progress Report presents the thesis of a candidate for a doc-

toral degree in physics, Benard A. Sodek, Jr. The title of the thesis

is a "Hydrodynamic Model of Micrometeroid Impact." This title is at

least two years old, since a tentative title must be named early in the

work on a thesis and it is preferred that the title remain roughly the

same. A much longer, but more descriptive and more complete title would

be "Hydrodynamic Flow from the Hypervelocity Impact of an Aluminum Sphere

on a Semi-Infinite Aluminum Slab." This thesis considers the flow that

occurs when an aluminum sphere is incident_ at hypervelocity_ on a semi-

infinite aluminum slab. The selection of a sphere of aluminum to impact

on a slab of the same material was dictated by the requirement that the

program for computation on a digital computer, written in Fortran II,

should not overflow the 32,000 word memory of an I.B.M. 7094 digital com-

puter. Part of the required space represents a mesh for which are recorded

d
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the initial position and condition of the material in the problem and for

which the values of the solution are recorded as the calculation proceeds.

A more general problem would consider the impact of a sphere of any

material on aluminum, or vice versa. The assumptions and the basic tech-

niques for solving this problem require that the equations and techniques

of this report be combined with the treatment of the shock penetration

and reflection at an interface. The latter subject was treated in Quar-

terly Progress Report No. 13. Another necessary technique for this prob-

lem is the reflection of the shock front from the back, or top face of

the impacting sphere. This subject was not considered in Progress Re-

port No. 13 but has recently been studied by Lin Wang, one of our stu-

dents. Progress Report No. 13 dealt with the penetration of a hemis-

pherical shock in aluminum, through a plane interface into glass. That

Progress Report shows the manner in which the interface between two ma-

terials, with different Hugoniot curves, must be treated. The preface

to Progress Report No. 13 gives many of the considerations that are neces-

sary to evaluate the raw data from the computer into the proper, practical

solution of the problem. Much of that information is applicable to this

thesis.

The attached thesis presents the direct output of the digital com-

puter. The solution of the presented equations is exact to the degree

that a digital computer solution of difference equations, instead of dif-

ferential equations, may be exact. This thesis purposely presents the

solution, as obtained, with only some slight smoothing of the data. For

the reader to evaluate the data, it is desirable to designate the regions

in which the most significant errors appear and to show why these errors



were permitted to occur. These errors are, in general, a consequence of

limitations on the computer method and on the solution from the computer.

For this discussion, the more significant errors are grouped under four

headings and each is discussed separately. These headings are: (I) Smooth--

ing of the data from the mesh values; (2) Long slope in the shock front;

(3) Error in apparent ratio of depth to surface radius for the calculated

crater shape; and (4) Oscillations behind the shock front. These sec-

tions are followed by a brief summary of the information that is disclosed

by the computer solution.

MOST SIGNIFICANT ERRORS

Smoothing of the Data from the Mesh Values

The digital computer employs "difference" equations instead of the

actual differential equations for hydrodynamic flow. With the difference

equations, average values for the density, velocity, pressure and energy

are calculated for each block in the computer mesh. The smooth curve that

represents the free surface, as an example, is a curving line that is drawn

through all of the blocks in the mesh that have empty meshes on one side

and have aluminum filled meshes on the other side. This is illustrated by

the smooth curve for the surface that is drawn in Figure 45 on page 109.

The blocks with dots have empty space in the meshes above those with dots

and aluminum in the meshes below _ho_e w_th dots. In addition to the sur-

face, the isobars, the curves for constant density and the curves for con-

stant energy are drawn in the same way. There are two additional guides

for drawing the isobars: (a) The pressure at the tips of the isobars tend

toward intersecting lines, although the two intersecting isobars may end

in a single block; (b) The curves only show one quadrant and the quadrant



to the left must be a mirror image of the one that is shown. As a conse-

quence, the isobars, iso-density and iso-energy curves must all be perpen-

dicular to the vertical axis.

The size of the mesh is selected from several considerations. The

initial mesh size is relatively small to show the details of the initial

stages of the impact° The number of meshes in the initial grid is deter-

mined by the available space in the memory of the computer. As the impact

proceeds, the number of meshes is gradually filled until a preselected

beundary mesh is reached. At this time, the computer is programmed to

double the radial length of each mesh, but not to change Ae. The solution

then fills roughly half of the available number of meshes and the problem

may be continued until the meshes are again filled. After the change of

scale for the size of the meshes, the values of the variables in two meshes

before condensation are averaged, by the required technique, and placed

in a single mesh. In addition to the size of mesh, the angular region

that is covered by the meshes may need to be increased in order to follow

all of the changes that are produced, including those at the greatest

distance from the axis of impact. The meshes that are added when the

angle is increased in finite steps are the same size as the existing meshes.

Long Slope in the Shock Front

This subject is discussed in considerable detail in the preface to

Progress Report No. 13. The following comments are primarily a recapitula-

tion. The long slope is a consequence of employing the method that was pro-

I
posed by John von Neumann and R. D. Richtmyer in order to obtain a solution

for the propagation of a shock front with a digital computer. This is the

well established technique that introduces a pseudo-viscosity term to damp



out the computer-generated oscillations. These oscillations result from the

large amount of kinetic energy that is inserted in the problem by a large

increase in pressure in a single mesh. This subject is discussed in con-

siderable detail in Progress Report No. 13. The actual, thin shock front

occurs, according to von Neumann and Richtmyer, near the position of the

steepest gradient in the shock front that is calculated by the computer and

that is represented by the isobars at the shock front on the plotted curves

in this thesis.

Error in Apparent Ratio of Depth to Surface Radius for the Calculated Crater

Shape

It is particularly obvious at high initial velocities of the incident

bullet, that the ratio of the depth to the surface radius for the craters

is greater than unity. It is to be recalled that this ratio is very close

to unity for all experimentally produced craters that have been observed.

The very highest velocity in this study, 60.64 kilometers per second, or

198,500 feet per second, is higher than measurements have been made on craters.

As a consequence, the appearance of the crater must be seriously considered

to ascertain if it is real. It probably is not real and this follows from

these considerations. Durip_ the impact and penetration of the bullet into

the target, the material of the target appears to flow up around the outside

edges of the entering bullet. Eventually, the highly-compressed material

of the target reaches the surface and, according tothe plotted results, appears

to pile up around the edges of the crater. This pile-up is at complete

variance to the spray that is actually observed to be emitted in the forma-

tion of the crater at lower velocity impacts. The apparent pile-up of the

target material could result in a greater ratio of depth to surface radius



=han unity, for the target material must push against this pile-up to es-

cape. This apparent pile-up of material is indicated by the computer calcu-

lations, that omit from consideration, somefundamental laws of physics.

This omission was knownbefore the solution was started and was necessitated

by a lack of space in the memoryof the computer to insert them. The nature

of the omissions are indicated in the next paragraph.

P
Whenthe non-dimensional density ratio, To, becomesless than unity,

the material is under tension. Whenthis tension becomesmore negative than

-15 to -25 kilobars on the equation of state plot, previously unaffected

aluminumwill rupture. The exact value for rupture is not knownand is not

directly applicable in this problem. Aluminum that has been heated by the

passage of a shock front will rupture at a smaller negative value than indi-

cated above, and the aluminum may even become a vapor and require no energy

to rupture. The amount by which the density ratio, _o' must be less than

unity is very small and may reach zero for the formation of a spray that

will prevent the formation of the pile-up of material. It is not possible

to place all of the preceding information in the memory of the computer for

a straight-forward solution without the overlapping of the computer program.

The actual program employed more than 31,500 words of the available 32,000

words in the memory. The instructions that were given in the computer were

to set any value of the density that is less than unity equal to unity and

to continue. This is the probable origin of the observed apparent deviation

from unity of the ratio of depth to surface radius of the crater.

Oscillations between the Shock Front and the Free Surface

As the penetration of a particle, which has impacted at hypervelocity,

proceeds into the target; the particle gradually slows to a stop. Two



possibilities exist to explain the observed separation of an initial and

of subsequent shocks and oscillations. (i) The high pressure from the

initial impact results in a shock front that propogates faster than the

penetrating particle, after the particle is slowed by loss of energy in

the target. (2) There is a reflection of the shocks and the oscillations

at the back of the penetrating particle. It is to be anticipated; there=

fore, that oscillations will occur in the region between the shock front

and the free surface of the penetrating particle. There is evidence that

oscillations are present. Fluctuations in the emitted light are observed

and have been reported in these Progress Reports. The computer calcula-

tions that are reported in this thesis show their presence.

The computer solution for a hypervelocity impact gives information on

the oscillations. Plots of the isobars, for different instants of time dur-

ing the penetration, may be assembled to illustrate the presence of oscil-

lations. Start by referring to Figure 28 on page 87 of the attached thesis.

A non-related error is immediately apparent; the isobar for zero pressure

must attach to and coincide with the free surface of the target outside the

region of the impact. Except for this error, the pressure down the verti-

cal axis on the drawing shows a slow increase to a maximum and then a more

rapid decrease to zero at the shock front. Recall that the apparent long

slope of this shock front is not a physical reality, and this was discussed

in an earlier section of this preface. There is no particular evidence of

an oscillation in this drawing. As the penetration proceeds, Figure 30 on

page 90 shows that a low pressure zone, less than 16 megabars, occurs be-

tween the isobars for 25 and 20 megabars. This oscillation of more than

4 megabars amplitude is not negligible. As the penetration continues,



Figure 34 on page 95 shows an uneven pressure fall without much evidence

of large oscillations. As the penetration proceeds and the pressure falls,

the pressure contours on Figures 38 and 40 on pages I00 and 102, respec-

tively, show uneven pressure and some evidence of oscillations. There is

no evidence of pronounced oscillations of large amplitude at pressures

below roughly 5 megabars.

The oscillations are believed to exist at all pressures; but are

n_sked, more or less, below 5 megabars in comparison to the amplitudes at

pressures between 15 and 25 megabars. This is another example in which the

instructions to the computer are not correct, in terms of basic physical

laws, and an error results. The initial shock front compresses the material

up the Hugoniot curve. The details of the compression up this curve were

discussed in Progress Report No. 13. The Hugoniot curve includes an in-

crease in entropy as a consequence of the shock compression, since the

entropy always increases across a shock front. The expansion behind the

shock front is along a line of constant entropy and, in the absence of

viscosity, the expansion is along an adiabat. After the first compression

by the shock front, subsequent oscillations in the pressure may, or may not,

remain on the adiabat on which they started.

The computer was instructed to follow the Hugoniot on the first com-

pression but the first expansion was to be along an adiabat. The computer

was not instructed to stay on the adiabat for subsequent compressions and

expansions. As a consequence s the computer tends to have the second com-

pression return toward the initial Hugoniot curve instead of remaining on

the adiabat. This is the equivalent to having the computer drops from the

computation, some of the internal energy of the material. A second shock
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front, which produces a second compression, should increase the energy con-

tent of the material from the starting position of the material as it follows

the adiabat in expanding. A slow increase in the pressure, should be along

the adiabat on which the material starts the compression. Without further

discussion of the type of recompression which mayoccur, it is significant

that the deviation from the correct results are the greatest below roughly

5 megabars. An inspection of the Hugoniot and the associated adiabats will

show that significant deviation are largest in this pressure range. Lin

Wang, one of our students, has modified the program, at the "expense" of

more space in the computer memory so pressure oscillations will follow the

adiabat on which the material finds itself after the original compression

by the shock front.

SUMMARY OF INFORMATION DISCLOSED BY SOLUTIONS

The presented curves from the computer solution are an approximation

to the actual solution for the hypervelocity impact, at vertical incidence,

of a sphere on a semi-infinite slab. The reasons for the approximations

were presented in the preceding discussion, and are primarily related to

insufficient space in the memory of a 7094 computer. After this discus-

sion of errors in the solution, it is desirable to mention the facts which

this solution does establish.

The solution shows that the --_ = _+_-+ ..... _h ° _=1=_v_ly

smooth motion, into the semi-infinite slab. The impact compresses the

material of the sphere and of the target ahead and beyond the sides of the

sphere of the original sphere. This compression of the material of the

target and sphere produces a cavity which appears behind the sphere but

this cavity is only remotely related to the crater which eventually forms.
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The curves which present the computer calculations apparently show rough

edges and a pile-up of material around the edges of the cavity which is men-

tioned in the preceding paragraph. These rough edges are mostly erroneous

and result from incorrect information to the computer. This subject is dis-

cussed in the preceding sections of this preface to the thesis. This pile-

up of material should be ignored. In general, this "ignores" material that

has been subjected to such a large shock compression, that the decompressed

material, after the compression-expansion cycle, is either a plasma, a gas,

or a liquid.

As the penetration of the sphere continues, highly compressed zones

are formed in the combined material of the target and the sphere. These

compressed zones precede and surround the region in which the sphere is pen-

etrating. The isobars for these compressed zones assume the shape of crude,

thick bottomed "bowls" with sharp, upward-pointing edges. The "bowls" be-

come larger in diameter and deeper below the surface as the initial velocity

of the sphere increases.

The material on the surface of the target remains at substantially atmos-

pheric pressure. At atmospheric pressure, the surface distrubance from the

impact can travel no faster than the velocity of sound in the elastic material

of the target. More accurately_ it travels at the velocity of the Rayleigh,

or shear waves. The information to give this velocity is not programmed into

the computer on account of the amount of space that it would require in the

memory of the computer. A more detailed equation of state is required and

this basic information is available to formulate a program. The surface

velocity that is programmed is the so-called hydrostatic velocity which is

essentially zero on the exact air-metal interface.
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The shock front, which produces the highly compressed material below

and on the sides of the penetrating sphere, travels at a very high velocity

in the body of the target. The sharp edges of the '_isobar-lines", which de-

fine the "bowl", are formed deep in the target, reach the surface ahead of

the true surface disturbance, and blow off the surface material around the

edges of the "bowl". These blown-off edges are the edges of the crater that

is formed by the overall action of the impact.

Since the impact does not obey the laws of similitude for different

velocities, or for different diameters, the impact was investigated for six

velocities. Since the effect of the diameter was more difficult to formu®

late, it was not investigated for this particular thesis. About 222 curves,

besides those that are included in this report are required to show the var-

iation of the impact with velocity. These curves will be forwarded in the

next Quarterly Progress Report.
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C_PT_ I

INTRODUCTI ON

Micrometeorolds are defined as particles which have a

mass of less than 10 -4 grams _nd velocities that range from

30,000 to 240,000 feet per second. V_en these microparticles

are smaller than lo-llto 10 -12 grams, the pressure of the

radiation from the Sun will eventually push these p_rticles

outside the orbit of the earth. (I). They are detected by

devices placed on space vehicles. One device that has been

successfully used is a photomultiplier tube with a vapor

deposited aluminum film covering the face. (2). The micro-

meteoroids impinging upon the face of the photomultiplier are

known to produce _ pulse of current through the tube. Other

devices that depend on the production of a plasma by the

impact sre presently used.

The NASA project for which this thesis is a contribution

was initiated _s an analytical and limited experlment_l study

of micrometeoroid impact on the coated photomultiplier. The

project is concerned with the mechanics of impact which

result in oroducing light to activate the photomultiplier

tube and which result in _roducing the craters associated

with hypervelocity imoacts.

i



Proposed Impact Theories

2

A few published articles have reported methods to predict

and analyze the impact phenomena of small particles with

hypervelocities. The latter term includes all velocities in

excess of the velocity of sound in the target. One article

approaches the problem from the thermal damage theory. (3).

In this theory, the flash of light accompanying the impact is

attributed to incandescence of the target and of the micro-

particle in the immediate vicinity of the impact. By this

concept, the crater is caused by vaporization and explosion

of some of the target. This model has been criticized for the

following reasons. The crater is found to be lined with pro-

Jectile material. The thermal model, however, offers no expla-

nation for this lining effect. Conversely, it would appear

that as the target material is converted to a vapor, the pro-

jectile material should also be converted to a vapor. The

succeeding explosion should, therefore, hurl both surrounding

target material and the projectile out of the crater. Another

reason for not accepting the entire thermal damage model has

been suggested by calculations based on a limited amount of

experimental evidence. (4). It was found that over 50 percent

of the kinetic energy is required to heat and melt the volume

of target material that is removed from the crater. This

leaves very little energy for evaooration and radiation

processes.

Bjork (5) examined the problem of a high-velocity pro-

jectile of cylindrical symmetry impinging upon a semi-infinite
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solid. BJork used a hydrodynamic model of impact which suggests

that the penetration of a projectile into the target is much

the same ss one fluid penetrating another. That is, the tar-

get and projectile, under the tremendous forces of impact,

become fluid _nd the fluid projectile penetrates the fluid

target. The hemispherical shape of the crater is attributed

to the strong rsdial shock wave that is initiated at the point

of impact. One defect of this model is that it does not

include a mechanism for the production of light. This thesis

shares a number of assumptions and procedures with the work of

BJork.

A different theory of impact has been prooosed by F. C.

Todd (6), project supervisor. This theory proposes that a

plasma is formed by the strong radial shock from the impact.

A plasma is defined as a mixture of ions and electrons. It will

start to form from the application of pressure alone at a

pressure of anproximately lO0,O00 atmospheres. (7). The

radiation that accompanies the impact results from the elec-

trons in the plasma recomblning to form neutral atoms. It

is also proposed that a radial shock wave would account for

nearly hemispherical shape of the crater. It can be seen

that the proposed plasma model partially agrees with the

assumptions made in both the thermal damage and hydrodynamic

models of impact. The plasma model includes a radial shock

which was assumed to accompany the hydrodynamic model and it

also assumes that the material in the immediate vicinity of

the impact regions has a high energy density as does the



thermal model. It differs from the thermal damage model in

that for thermal damage, the high energy density is in the

form of a high temperature; while, for the plasma model, more

of the energy is in the form of recoverable potential energy.

4

Statement of the Problem

The subject of this thesis is the investigation of the

hydrodynamic mechanism involved in the plasma theory proposed

by F. C. Todd. It is particularly desired to determine

whether it is possible to theoretically calculate the forma-

tion and propagation of a shock wave resulting from a hyper-

velocity impact.

When a microparticle, traveling at hypersonic velocities,

strikes a target, a crater is formed which is many times

larger than the projectile and is centered about the point of

initial contact. The crater may have a small lip ground its

edge. Rapid sequence photographs show that 8 fine spray of

material is ejected from the boundaries of the crater as it

forms. This evidence is to be contrasted with the more

familiar impact of subsonic projectiles. These leave long,

deep holes in the target which are only slightly larger than

the projectile itself.

Reasons for assuming inviscld, hydrodynamic flow in a

hypervelocity impact have been summarized by Charters (8).

His qualitative description of penetration shares a number

of features with the quantitative results of this thesis.

Much of the qualitative discussion that follows is based on



photographs published by Chsrters. The observation that the

formation of the crater requires many microseconds suggests a

sustained disturbance, such as from a shock wave, in contrast

to an explosive reaction. The material is ejected by hydro-

dynamic flow along the walls of the crater. From these

comments and the symmetrical shape of the crater, the hydro-

dynamic model appears to provide the best clarification of

the results.

A basic feature of the model to be investigated is the

formation of two shock waves at the _osition of the initial

contact. One strong shock wave radiates out from the point

of impact compressing and accelerating the material of the

target. This shock wave precedes the penetrating micro-

particle into the target. The other shock wave propagates

backward against the motion of the impacting microparticleo

This shock wave eventually reaches the back edge of the

mlcroparticle and is reflected back into the direction of

motion of the first shock.

The computer solution does not distinguish between the

aluminum of the incident sphere and the aluminum of the semi-

infinite target after they come into contact. The details of

the impact are, consequently, a little difficult to follow

and to interpret. Anticipating the general results of the

solution, the impacting microparticle appears to compress

the target material ahead of and surrounding itself. This

results in the hydrodynamic flow of the target material up,

around the entering particle and out of the target.

5



According to the pictures from Charters' article, this materi-

al leaves the target as spray.

The model to be studied involves the assumption of

inviscid fluid behavior of the target and projectile, and it

neglects heat conduction, radiation, and other forms of energy

dissipation. While thi_ characterization will be modified to

a limited degree by the inclusion of a pseudo viscosity at

the shock front and at large oscillations in the velocity,

the proposed model remains basically that of a non-vlscous

fluid. It will develop that the proposed program requires

over 31,500 words of space in the computer memory, and only

32,000 words are available. The inclusion of any of the many

other obvious corrections to the impact problem would require

an extremely large increase in the length of time on the

computer.

The problem for solution is the impact of a spherical,

aluminum particle of mass lO -9 grams. Velocities of impact

are from about 15,000 to 240,000 feet per second. The

target is a semi-infinlte block of aluminum.

The work presented in this thesis may be briefly out-

lined as follows:

(1) The partial differential equaSions --_ _^

auxilllary equations of large-scale fluid

flow are developed and converted to a

dimensionless form.

(2) The dimensionless hydrodynamic equations are

converted to difference equations for computer

6



(3)

(4)

solution.

The difference equations are translated into

a computer program.

The computer program, combined with initial

conditions and boundary conditions, gives

solutions describing the initial stages of

shock wave propagation and crater development

for several different impact velocities when

a hydrodynamic model is assumed.

V



CHAPTERII

FUNDAMENTALSOF THE INVISCID FLUID MODEL

When a micropartlcle with a velocity of 36 kilometers

per second impacts on a target, the pressure is calculated to

be millions of atmospheres. (4,5). At such extreme condi-

tions, both projectile and target are considered to be non-

viscous fluids. The necessary mathematical formulas to

describe inviscid flow exist, are well known, and are proven

by experiment. They are the three equations for the conser-

vation of mass, energy and momentum. Boundary conditions and

equations of state for the materials of the microparticle and

the target are required to describe conditions on each side

of the impact. The entropy must also increase across the

shock front. These equations do not have a closed solution

or a practically useful approximate solution. The mathemat-

ics are generalized as far as possible and prepared for

solution by numerical methods which utilize a high speed

electronic comput sr.

The Equations of Fluid Flow

The basic equations of the hydrodynamic model are

obtained by the applicstion of conservation laws to a perfect

fluid. Let S be a closed surface, fixed in space and

8



enclosing a volume, T ; then the increase of mass inside this

surface is

In this equation, /o is the density, St

ment s of time and volume.

..,..1

where V is the material velocity and

and J_ are incre-

The rate of flux through _ is

S is a small element

of the bounding surface. The rates must be equal.

which by means of the divergence theorem becomes

Since the volume "f is quite arbitrary, the integrsnd must

vanish for all volumes.

"-'l;,(-p biJ-" 0* _.._. _ -

This is the expression for conservation of mass.

The conservation of momentum is derived in a similar

manner. Consider a volume, "f" , of fluid that is bounded by

a closed surface _ . If _ is the hydrostetic pressure,

the force acting on the volume, M , is



Trsnsforming to a volume integral,

The force per unit volume acting on the fluid is

f

lO

This is the largest force considered in fluid mechanics.

Using Newton's Second Law,

pF+r_ ÷ Vp=O

where F represents the resultant of any body forces acting

on the fluid. Body forces such as gravitational, magnetic,

or electric, are not Imwortant in the hydrodynamic model for

this appllc_tlon and F is set equal to zero. The equation

of motion is now written,

r _ + Vp=O

The equation expressing conserv_tlon of energy can be

obtained by analogy with the conservation of mass equation.

The relstion expressing continuity of total energy is

dE _ 3
= _ v.cbv)P _E

where _ is the total energy per unit mass.

An auxilliary equation is necessary to relate the

pressure, p, to other fluid variables.

= F ( p;,ej 2.4

This is the equation of state which yields the pressure as a



function of the density and the specific internal energy.

There are two forms in which these equations c_n be tied to

a physical region. The Eulerian reference frame de_ls with

the values of dependent variables at fixed points in sp_ce

and time. The Lagrangean system describes the motion of a

fluid in terms of the trajectories of individual elements.

In most cases and particularly for two and three dimensional

cases, Euler's representation is preferable from a mathemat-

ical and a physical point of view, according to Courant and

Friedricks (8).

Previous solutions of large scale fluid motion in two,

or three, dimensions have usually employed rectangular or

cylindrics1 coordinates. An examination of experimental

evidence and of earlier sn_lytic _pprosches indicates that a

radial, or polar, coordinate system is the best representa-

tion for this particular problem. The shapes of craters from

high velocity impacts are virtually perfect hemispheres.

This would indicate that the transfer of energy from projec-

tile to target is largely accomollshed by means of radial

flow. This description complicates the representation of

the impacting sphere, but the desire to portray the forma-

tion _nd propagation of the expected shock front is _ over-

riding consideration. Since experimental evidence of the

actions of target snd projectile shows no azimuthal effects,

symmetry of the solution about an axis normal to the semi-

infinite target (that is, the z-axis) will be used in writing

the equations in polar form.

ll



Using a few identities, the vector forms of the hydro-

dynamic flow equations, are easily converted to scalar, polar

form. The necessary expansions are

12

_'._F = _' V.F + V_"F .and

...A

where F is a vector quantity and

The conservation of mass becomes

is a scalar.

The new variables U and _" are the radial and tangential

components of the material velocity vector, V •

The polar equations expressing conservation of momentum

are not so easily obtained. The original equation is equiva-

lent to two scalar equations, one for each component of the

velocity,

du Jh
P dt - _-

- dw - Jb

Remembering that for s scalar _ ,

-_--- _ ._.v_
dt - _t



13

the first equation is rewritten,

This equation will now be put into a form appropriate for

"conservative" differencing by adding a term, U _ , to

each side and using equation 2.5. The result is

G}_P_I,) - _ _ _ J (_l'pu w ) _ 2.6

The equation for the other velocity component is obtained

in a similar way,

The formula describing conservation of energy is also

manloulated into m conservmtlve form.

Since the conservation of momentum requires two equations,

the three conservation conditions require four equations, 2.5

to 2.8. Two more relations sre required to solve for the

propagation of s shock wave. These are an equation of stmte

and the condition that the entropy increase across the shock

front. These last two requirements may me incorporated into

sn equation of stPte b_sed on the Hugoniot curve. This modi-

fied equation of stmte is represented in functional notation

by equation 2.4 and this relation will be discussed in more

detail in a following section. Although the equmtion of state

involves only three variables, auxiliary relations are needed



to interrelate five unknowns the density, /XP ; the veloci-

ties, _ and w ; the internal energy, e ; and the

pre ssure, _ .

A Brief Description of Shock Waves

14

Shock waves are only dilatational waves in a non-viscous

fluid medium, which has negligible resistance to shear. For

this reason, the flow of highly compressed solids may be

represented by the equations of hydrodynamic flow. In the

propagation of a shock front, the pressure rises to s high

value in a very thin zone. This infinitesimal region of

rapidly changing pressure, density, and internal energy

a_oears as a discontinuity in the equations for hydrodynamic

flow.

To obtain solutions, it is necessary to derive condi-

tions that relate the state of the material on one side of

the shock front to that on the other side. The conditions

are usually called the Rankine - Hugoniot conditions.

Consider a plane shock front, as illustrated in Figure

l, traveling with a velocity of propagation _ into station-

ary material at pressure _ , density /_ , and specific

internal energy eo . The encompassed material is acceler-

ated to a particle velocity _- by the passage of the shock

front and is compressed to a density /o _/_ . The state

of the shocked portion of the medium is related to the undis-

turbed state by a series of conservstlon equations:
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Conservation of mass

p=2 : p C_ -a-j

Conservation of momentum

=

Conservation of energy

These can be combined to give the Ranklne - Hugoniot energy

e quati on

I

- eo = ¢vov;cp +po;

where FZl/IP.

These equations involve five parameters of the shocked

state. One more relation, an equation of state, is required

before the specification of one variable is sufficient to

permit the calculation of the other four. When the equation

of state is given in the form e = e (p,V), it may be combined

with the Rankine - Hugoniot energy equation to yield a rela-

tion between the pressure and the soeclflc volume. Such an

expression is known as the "Hugoniot Curve" or simply as the

"Hugoniot." This Hugonlot is unique for a given material, as

are an isotherm or an adiab_t. This special pressure volume

curve represents the totality of the p,V points which may be

reached by s shock trsnsition from an initial state _oj

Atypicsl pressure profile for a one dimensional shock

wave is indicated in Figure 2. Ahesd of the shock front the

material is undisturbed.

16

At the head of the wave the pressurej
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p increases almost instantaneously to its Desk value and then

decreases toward zero behind the shock front. This jump marks

the position of the Advancing shock wave the orooagatlon

velocity,_, of the shock front is suDersonlc with respect to

the undisturbed material, that is

Z

where C O is the velocity of sound in the uncompressed medium

shesd of the shock front. The propagation velocity,_', for

dlsturbsnces behind the front is gmeste_ than the shock

velocity

O- +C 2_

where c is the velocity cf sound in the medium behind the

shock front. The region of decreasing pressure is referred

to as a rarefaction wave, or s sivple expansion wave. The

peak pressure is relieved by means of this rarefaction. The

rarefaction gradually changes the entire profile ss the shock

progresses. The shock front has the shape of s hemisphere,

it will move forward as a distrubsnce of decreasing peak

pressure. From the assumotlon of an invlscid fluid, the

pressure might be exnected to decrease to zero st infinity.

The computer solution bv the method of yon Neuman and

Richtmyer requires the introduction of s pseudo-viscosity term

that speeds the decay of the amplitude.

One further specification must be included in the

Rsnkine-Hugoniot conditions for a strong shock wave. Entropy

must increase across the shock front. The passage of a

shock wa%:e requires 8n increase in entropy of the supporting
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medium. This dissipation is not yet provided in the Eulerian

flow equations or the Rankine-Hugoniot equations. Fortunately,

this further condition on shock propsgation ss well as the

Rankine-Hugoniot relations can be put into s modified set of

partial dlfferenti_ equations directly from the Eulerian

flow equations presented above.

The Introduction of Dissipation

Shock surfaces anpe_r in the differential equations as

po_ts where the velocitF, density, intern_l energy _d other

variables of the fluid _re disconti_uo_s. The RAnkine-Hugoniot

Jump conditions relate the two sides of the shock front. The

Eulerlan flow equations provide sufficient conditions for so-

lutions in regions away from both sides of the shock (9).

The process of applying the Ranklne-Hugoniot conditions as

boundary conditions on the flow equations; _nd thereby, solv-

ing the problem of the propagation of a shock wave is known

as shock fitting.

J. yon NeumAnn pnd R. D. Richtmyer (10), in order to

avoid the difficulties inherent in solving two sets of con-

servstion equations, devised a method of _utom_tically

handling shock motion in the numerical solution of the

differential equations. Their method treats shocks _utomat-

ic_lly in a digital computer. It is b_sed on the introduction

of sn _rtificial dissipative mechanism which has some analogy

to the viscosity and the he_t conduction which do exist in

real fluids. The introduction of this artificial, dissipative



mechanism, or pseudo-viscosity, into the differential equa-

tions tends to smear the shock wave and change it from a

discontinuity to a short region in which the variables change

rapidly, but continuously. Even though this method does away

with explicit application of the boundary conditions, the

Ranklne -Hugonlot conditions still hold across the shock and

the approximation of smearing out the shock can be made to

represent a transition zone as accurately as desired by

limiting the width of the shock.

The artificial dlssip_tive mechanism is introduced in

the form of a pseudo-viscosity term which can be added to the

pressure. Originally s term proportional to the square of

the velocity gradient was used. Practical tests and analyses

carried out by Landshoff (II) indicate that a linear combina-

tion of terms proportional to the first and second powers of

the velocity gradient gave better results in the numerical

calculation of shock problems. A similar expression has been

used in the present work. The dissipation is designated as

q and is given by

= - c,

where C t and C_ are disposable constants. Setting cA=O

would give the original von Neumann-Richtmyer equation. In

the polar frame of reference, q is

2.3.0

?r-J_ +

The Euleri8n flow equations are easily converted to their new

2O



form by reolacing p by the sum of p and q.

The modified equations describe, not only isentropic

flow; but also allow the description of large fluid motions

such as shock waves. The theoretical formulation of the

hydrodynamic model is complete except for a relation between

the pressure and other fluid parameters. A thermodynamic

equation of state which is valid at high pressures will be

presented in the next section. This will allow the statement

of the problem in a consistent set of equations which can be

solved by the numerical method of finite differences.

21

The High Pressure Equation of State

One of the most general forms of an invlscid equation of

state is the Mie-Gruneisen equ_tlon (12). This assumes a

material in which the internal energy can be expressed as the

sum of a thermal energy term and a volume dependent energy

term. One form of the equation is

I - V

where p_ and e_ are the pressure and internal energy on

the shock state curve, _ is a slowly varying function of the

density called the Gruneisen ratio and V is the specific

volume, V = #/p .

The construction of an extended equation of state in the

relatively low pressure range is based on the evaluation of

the Hugonlot pressure, and the Grunelsen ratio from experi-

mental information. The best source of data is from tbe



work at Los Alsmos. Walsh, Rice, and McQueen (12) have per-

formed numerous shock wave experiments which have given the

Hugoniot curve for aluminum up to one megabar. In this

region, the dependence of _" on the specific volume has also

been determined. For convenience, these curves are expressed

by equations of the following form,

22

where 5 represents _ or _" /_= _M - / = _ --/ j and

the AD are constants. An application of the Rankine -

Hugonlot energy relation allows the calculation of the

internal energy along the Hugonlot curve once _W is known.

Theoretical consideration is needed to extend the equa-

tion of state into the multl-megabar regions. It is believed

that at pressures greater than approximately twenty megabars,

the Fermi-Thomas (13) statistical model of atoms yields

reasonable pressure volume relations at a temperature of

absolute zero. Equation e.ll together with an extrapolation

of the CTunelsen ratio provides knowledge of the Hugoniot

curve. This further knowledge can be used to refine the

extrapolated value of the Gruneisen ratio.

The gap in the equation of state between one and twenty

megabars is filled by interpolating the Hugoniot curve and

the Gruneisen ratio between the experimentally and theoret-

ically known points. This information is presented in

numerical fits of the same form as equation e.12. The neces-

sary constants are given in Table I. A complete description



TABLE I

POLYNOMIALFORMSAhrD CONSTANTS

F OR ALUMINUM

S(x) ×n
n:l

ZERO DEGREE ISOTHERM, S(x) = p_

V/V o Al ,As A3

1.000 to .579 0.680 1.536 .468

.579 to .450 -1.574 5.116 -.206

.450 to .260 -8.715 11.620 -.620

HUGONIOT, S(x) = p,

V/Vo A] A2 A3

1.000 to .650 .765 1.659 .428

.650 to .518 1.150 -.852 3.998

.518 to .300 -2.194 4.035 2.604

GRUNEISEN RATIO, S(x) _ =

V/Vo A I A2

1.000 to .650 -5.193 12.098

.650 to .518 -4.513 6.800

.518 to .300 -1.355 .439

A3

-12.5500

- 3.7800

.0404

Pressure

(in megabars)

0.000 to 1.486

1.486 to 5.003

5.003 to 52.00

Pre ssure

(in megabars)

0.000 to 1.000

1.000 to 3.570

3.570 to 52.00

2.13

2.00

1.59
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of the process of constructing a multi-megabar equation of

state has been published previously. (4,14).

The existence of an _dequate equation of state now allows

the collection of the equations which describe the proposed

impact model. These will be put in a convenient form for

numerical solution.

24

Dimensionless Differential Equations

For convenience in using a fast computer, all variables

in the problem are scaled to prevent production of numbers

outside the capability of the computer. A dimensionless form

of the equations would also permit investigation of the possi-

bility of applying results to problems involving different

initial values.

The choice of a reference length is the first step in

reducing the set of relations to a dimensionless form. This

length, _ , will be related to the size of the impinging

mlcrometeoroid.

= +-(-_) 2.13

where _ is the radius of the projectile. Radial distances

are now measured in units of _/_ ,

2.14

Other variables are similarly made dimensionless.

D = ,,a/,,,_

p : p/po Q _- ,/po
U : u/r_ _V = w/co

E: e/_

2.15



The values of /_ and

The quantities Co and eo

are chosen quite arbitrarily.

are related to /_ and _o

25

The independent variable, t, is changed to the new parameter,

T , by the relation,

"7- = Co_/_,

The angular variable) _ is dimensionless.

The definitions in equations 2.14 - 2.16 can be sub-

2.16

stituted into the fluid equations that were given previously.

The equation for conservation of mass becomes

The equations for conservation of momentum are now

written

@(DLI) - _ aCP+_) _ ,_CBD L/ZJ_ __ _(O_VZJ) 2.18

and

_(DW) : dC#+Q,I _ dCRD vv'z../J
aT R d_ _d8

T_ese were made dimensionless by choosing

_ _ (Dw_/,)
Rd_ 2.19

Co so that

c '-po/po

terms of the new variables if the quantity

the following condition,

The conservation of energy equation can be expressed in

eo is subject to



The new equation is

aT R JR _ _e _ a/_ r__e

where

less.

The equation of state is simoly transformed.

P = PH +"_DCE-E_/) 2.21

PH is p.//_ and EH is _///eo ; _ is dimension-

The auxiliary equation for the artificial viscosity may

be obtained by considering the constants A_ and A_ as

resulting from the formulas

A;_ : q_/._

The constants, A_ and A_. , are chosen empirically to

provide the correct order of magnitude for the viscous pres-

sure term, rather than to fulfill theoretical relations to

other paremeters.

+ _ j _cR_+ I + ,4 2.22

With the equations in the desired dimensionless form,

it is now necessary to convert them to difference equations.

The next chapter will discuss the method of finite differ-

ences. The required difference equations will also be

obtained.

26
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CHAPTER III

THE NUMERICAL METHOD

A consistent set of equations was obtained in the last

chapter, which govern the space and time dependence of the

material functions in the microparticle and the target. It

is now necessary to solve these simultaneous equations.

There is no known analytic solution for this system of

equations, and it is not anticipated thnt one will be found in

the immediate future. (15). The highly developed state of

electronic computers, such as the IBM - 7090 or IBM - 7094,

makes the use of numerical methods feasible for reasons of

both time snd relative simplicity of processing. A well-

posed, inltial-value problem in fluid mechanics may be formu-

lated and the method of finite differences employed to convert

the differential equations to algebraic difference equations.

These difference equations may be readily solved on the large

computers.

To indicate the way in which the equations are differ-

enced, consider a function f = f(x,t). The change in this

function with time can be approximated as,

where J_ is a small time increment. This operation is

defined as a forward difference. A backward difference is

27



A more widely used and usually more accurate type of differ-

ence is the central difference

The accuracy of all three formulas depends on the size of the

time Increment, Jt . The partial derivative may be written

d't

when central differencing is employed.

As an example of a complete equation translation, that

is, the transformation of a partial differential equation to

an algebraic finite difference equation, consider the equa-

tion of continuity in one dimension. A one space dimension

net is illustrated in Figure 3. The symbols, _x and _t

represent small increments of the independent variables, x

and _ . The grid, or finite difference mesh, for x and t is

defined as the set of cells numbered, J, and the times

labeled, N.

J - 1,2,3, ..... , Jfinal

N = 0,1,2,3,..., Nflnal

A function value f(x,t) can be represented at the center of

any cell in the net as

A function value at either side of a cell is

The continuity equation is

28
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where V is the linear flow velocity. Values of/_ and V_

will be considered as representative values of the density and

velocity at the center of the J-th cell. A simple applica-

tion of central differencing yields

#_I I¢

• c_X "

3O

Central differencing is used for the space derivatives while

a forward difference replaces the time derivatives. This is

the general choice made in all equations to be discussed.

The use of forward time differencing is desired to conserve

memory space in the computer. Such a procedure requires only

two sets of space points in storage at any stage of the calcu-

lation. The substitution indicated above gives usable approx-

imations for all net points except the cells, J = 1 and J =

Jfinal. Such special cases require the use of forward and

backward differences to replace the prescribed, central

differences.

The Two Dimensional Difference Equations

The problem for solution has spherical symmetry and, for

_,_ rooo_,v__........_bA _au_tions_ for solution were converted to

spherical coordinates. Since the problem has symmetry, a

vertical impact may be followed, after a judicial selection

of coordinates, by plots on only a part of one quadrant in a

single plane. The coordinates are _ and 0 . For a normal

impact, the axis of _ for _=0 is taken vertically through

the initial point of contact between the mlcroparticle and



the surface of the semi-infinite slab. The origin of

coordinate, at which R : O, is t_ken at a little more

th_n twice the diameter of the micropsrticle sbove the

point of Inlti_l ImD_ct. The plot of the entire affected

volume of the Impact is obtained by rotating the selected

plane-mentloned above the vertical line R for_ =2K_. •

The region of impsct on the plane is divided into a

number of cells, _s shown in Figure 4. The equations

_re differenced for this mesh. The individu_l cells

are designated in soace by M in R direction snd L in

M r- 1,9,3,..., Mflnal _ MF

L : 1,2,3,..., Lfin_l = LF

The time is measured in units of N-DT, where DT is a small

but finite increment. The rsdius st the center of ench

cell is given by

R_ -- RO + DR. (M - .5)

snd at the sides of s cell by

RI,.,I_ = DR. (M- l)j R_I_ : D_./d _O

The othe_ two __--_s _ _ _oll o_ _y__ of_ constant

angle, which _re separated by a constant, D_. The

area of sny cell _t _ distance, R_, , from the orgin is

AA_ : R_- DR • D_

31
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Values of the density, the pressure, the pseudo-viscosity,

the two components of the material velocity, and the energy

are defined at the center of each cell and are regarded as

average properties of the material within a cell. Each vari-

able is designated as . This identification follows from

above snd refers to cell number _ along _ and the cell

number L in the _ direction. Given values for all cells at

a time T=O, the problem is to carry the values of the quanti-

ties stored for each mesh point forward by a small, later

time, DT.

Forward time differences are used for all time deriva-

tives and all spatial derivatives are initially written in

terms of central differences.

written as

/)7"

Equation 2.17 can now be

L /v /. ,4/' _. N' L //' L /_ /- /_

}_+,_ D_÷,,_ LJ_,,,= - R;_-,,_D_-,,= L/Z-,,_

_
_M 'D_

To compress not_tlon, see Fignre 5, quantities at M, L -1/2

are deslgnated sld_ one; at M - I/2_L, side two; at M,

L+l/2, side three; and at M+l/2,L, side four. Using this

shorthand, and factoring AA_ in the denominator, the finite

difference form for the conservation of mass equation becomes

All quantities on the right are for time N-DT. If these are
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L+½,M
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L, M
V

0 I

L, M-_"
SIDE 2

SIDE I

Figure 5. Cell Boundary Notation



all known, or prescribed, then the density, D_ v+# for

the tlme (N+I)'DT can be calculated.

The other conservation equations are treated similarly.

Radial equation of motion:

+ DeC( _Du)=JJ= - C_DuJ_/.J_) 3.2

+D_ ( (DWJ,U,-(DW)_U_).7

Tangential equation of motion:

cDw) ""-- + L D c'eP+Q ,-CP+o).,)

+ DR ( (OWJ, M -(DW)_ WW,J

Conservation of energy:

(D_)j _" = (DE)_ + _ L DeC/TEP+-Q)_.LI._ -REP,Q)_, U,,)

+ Ol4(CP*Q.J_ _ - (P+QJJ ld3)
3.4

+ D_CC_DAIJ_f_ -(RDZO_E,)

The two auxiliarly equations are independent of time and

are simply translated

35

The new parameters are easily identified:

All three are functions of the density

PH - A'T + _'T _ + g" T "_

Ett = T. PHI _ C-F *1)

G -- _o + A'. T + B" T _ * E"T;



where T =_ = D_- / The parameters A,B,C, G o ,A T B'

C' represent constants in the fitted polynomial functions.

The formula for the pseudo-vlscosity is

: - (Y)'( IYi ÷Aa) 3 6

where Y= pe£ dRu)_-C_u)_ 3 + DRLw3-_/I2

The above system of equations is explicit and the solu-

tion may be moved forward, continuously, by means of simple

algebra. Equation 3.1 gives a value for the new density,

which is then used to find the new velocities from equations

3.2 and 3.3. Continuing with these known values, internal

energy is found from equation 3.4. At the new time level,

the quantities D_÷l , ,E_,l , _,i , and _/H÷I

enable the additional equations to be solved for new values

of the pressure, P, and the pseudo-vlscosity, Q. The new

profiles (set of values _ H,I) then become the starting

point for the next advance in time.

The formulated equations have values defined at cell

boundaries which are not actually carried in the problem.

Consider

°,

This is most easily replaced by

i. L. L+,.+.: c+,..++,>la 3.'7

which is a simple averaging formula. Unfortunately, if all

half-step expressions in the flow equations were replaced by

approximations of this type (which is designated as Type I),

36



the resulting system would be unconditionally unstable. (16).

This means that any solution that is obtained numerically

would become oscillatory as time progresses, and the ampli-

tude of the oscillations would increase without limit. This

difficulty may be avoided by the selection of other types of

formulas for the approximations. These methods correspond to

a more accurate approximation of the derivative, while the

system of flow equations remain formally in a central differ-

encing representation. Essentially, one dimensional forms

are used, since values on the sides one and three are differ-

enced for one dimension in the L direction for each M. Values

on sides two and four are differenced in the M direction for

each L. Only values st the (_) 1/2 sides are discussed

since transition to the (-)1/2 side is effected by subtracting

o1_efrom the cell index.

To replace the unsuccessful averaging method, equation

3.7, which is Type I, consider two other approximating formu-

las,

Type II _÷,I_ = 0

Type III "_#_-II1

V'T 0

: O 3.8
< 0

V. >O

Vr =0 3.9

O

The quantity V_ is a test velocity, either

/-/_+l) or (_/M + "_IL÷l) . Since Vr indicates the direc-

tion of fluid flow, the difference approximation responds to

changes in flow direction. Type II differencing yields a

3V



38
forward or a backward difference formula depending on the sign

of Vr • Cell values found from this approximstlon result in

a diffusion, or second order smearing effect. (16). Numerical

stability of the solution is improved by this diffusion. The

magnitude of this effect assists in avoiding excessive spread-

ing of the shock fronts in the finite difference net. Simple

velocity and energy terms are evaluated by use of Type II

differencing.

Type III differencing is the result of a quadratic fit

of _(_) through the point of interest. Type III is a better

approximation than either Type I or II, since four cell values

contribute to the function value. Mass flow terms and densi-

ties are found by Type III differencing. The stability of the

equations resulting from use of Types II and III differencing

allows the use of Type I differencing for some function values.

A more extensive discussion of these formulas and their appli-

cation may be found in works by Longley (16) and Sodek (14).

At certain points of the net, the Type III approximation

may not be used since values for four cells are not available.

Near the points L - I and L = LF, M-- I, and M - MF, Type I

differencing is used for all quantities in order to avoid the

difficulty of having the computer seek nonexistent cells.

Pseudo-points are defined for cells not actually in the mesh

by means of formulas developed by Ables (17). For a point

just prior to L=l, say L0, the functional value for use in

Type I differencing is given by

= 3< - 3



Similarly, for a cell labeled LF÷ I which is just past the

last defined cell,

L. Ftl LF -LF-/ .(.-.LF--A
3.11

These same expressions are used for points MO and MF_ 1 which

are defined exactly as LO and LF÷l.

The selection of means for evaluating all terms in the

modified flow equation provides an algebraic procedure, very

straightforwardly programmed for a digital computer. Then

the equations will yield a solution for two-dimensional,

fluid motion, including shock waves and other large-scale

fluid movements.
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Finite Difference Mesh Configuration and Cycling

The selection of a single plane to illustrate the solu-

tion and to provide the net that is required for the computer

solution was discussed earlier in this chapter. Both the

microparticle, before impact, and the free surface of the

semi-infinite slab must be included in the plane. A possible

positioning of a polar coordinate system on a practical plane

is illustrated in Figure 4. The microparticle is represented

by a semicircle of radius RM. The position of the face of

the semi-infinite target is initially given by

R sin@ = S 3.12

where S is a constant distance measured in the same units as

R. In such a mesh, there are three possible kinds of cells;

cells full of aluminum, empty_lls, and mixed cells, which

are partially filled with aluminum and partially empty.



These mixed cells contain a material - vacuum boundary. Each

mixed cell is marked with a parameter called the partial

area, A_ • It is a quantity which signifies the amount of

area of a cell that is filled by aluminum.

The initial information to the computer program is the

free velocity of the microparticle, Vo, together with the lo-

cations and partial areas of the mixed cells.

The circumference of the mlcrometeorold is given by the

equation of a circle in polar coordinates,

+ R - 6R =0 3.13

.a:}.where a is the radius of the circle with center at ( _9

The partial area of a cell is determined by computing the

points of intersection of this equation with the coordinate

lines of constant R and constant @ and then by integrating

between these limits. This process is illustrated in

Figure 6. The diagram shows a typical mixed cell in the

lower half of the projectile. There is a sign change for the

upper half of the mlcropartlcle. These calculations were

made independently of the main computer program on an IBM-650.

The motion of the mlcroparticle as well as the boundary

of the target is followed by changing the partial areas in

the mixed cells and by the appearance and disappearance of

mixed cells. The fluid parameters of a mixed cell are calcu-

lated in the manner that is outlined, above, for aluminum

cells. The major problem posed by the existence of mixed

cells is that of changing the partial areas in time. Perhaps

the simplest possible method is to use an approximate formula

4O



41

82 81

/f,(R,e)

R"L ! / Ra

.'.......... _ i /

!

8" e'

fl (R, 8) is the equation of o semicircle.

Ri, R2, 8, 82 ore cell boundrles.

R', R_' 8' 8" ore limits of integration.

-8" R"
A- _, f., ['R.-f..R. e)] ,R d8

" Figure 6. Initial Partial Area Calculation



based on the known velocity components.

3.14

where

ZI R = " DT
i

ZI = . D T

and DT is the elapsed time of one iteration cycle.

The calculation of the new partial areas is the last

step of a calculation cycle. The whole mesh has been moved

forward by a time step, DT. The mixed cells, which may con-

tain a moving boundary, must be changed from time to time.

A test must be made after the end of each time step to ascer-

tain whether any of the mixed cells should be replaced by

either a full, or an empty cell. Either possibility requires

the construction of a new mixed cell. The partial area of a

mixed cell might be calculated greater than the actual area

of the cell, or as vanishingly small. In both cases, the cell

is changed.

In stunmary, the solution is obtained as follows, the

values of all parameters are found by successive applications

of equations 3.1 through 3.6 for all full and mixed cells.

The parameters of an empty cell cannot be changed by theae

equations. Empty cells sre changed only by movements of

mixed cells. Then, the new partial areas are found and

mixed cell changes sre made, if necessary. This procedure

can then be repeated to give a numerical solution for the

whole region as time increases with each calculation cycle.

42



Quality of Solutions

43

There are two important questions to be asked concerning

the accuracy of a numerical solution to an initial value prob-

lem. (18):

1. Do both the partial differential equations and

the difference equations possess unique solu-

tions?

2. If the answer to I is yes, is the solution that

is obtained by solving the difference equations,

step by step, actually a sufficient approxi-

mation to the true solution of the given

problem?

Full and completely rigorous answers to these questions are

not available. A unique solution is Judged to exist if the

physical problem is well defined. It is generally believed

that the compressible fluid equations give rise to a system

of partial differential equations which define a well-posed,

initlal-value problem. (19).

The second question concerns the convergence of the

approximate solution to the true solution. The true solution

is not known for comparison. The system of difference equa-

tions is examined, somewhat empirically, for convergence.

Different combinations of the increments, DR, D@, and DT are

used and the resulting solutions are compared. If these

different solutions agree very closely, then a good solution

is probably being obtained.



A more encouraging condition can be suggested from the

Equivalence Theorem of Lax (20):

Given a properly posed initial value problem and a finite-

difference approximation to it that satisfies the consistency
condition, stability is the necessary and sufficient condition
for convergence.

The consistency condition requires that the resulting numeri-

cal solution depend continuously on the initial data and that

the difference equations go over to the differential equa-

tions as DT, DR, and De approach zero. The first part of

the condition is satisfied by the mechanism of the finite

difference method by which the solution progresses from the

known to the unknown. The second part of the consistency con-

dition is satisfied, since this is the usual method of deriv-

ing the hydrodynamic flow equations. With the Idea estab-

llshed that stability implies convergence, the concept of

stability will be examined.

Since numerical approximation methods are used, it is

expected that there is a small difference between the true

solution and the computer solution,

The solution is stable if this error remains small or grows

•ma!!_, The solution is unstable if s grows without limit.

When the computer results indicate profiles with exceptional,

oscillatory behavior, the particular solution is judged

unstable. It has been determined that instability can be

corrected by the proper choice of the mesh ratio, _X/DT .

The position vector is _ = __ .

44

(21 .



One well-known relation in the field of fluid dynamics

is the Courant condition (22),

/I DT E a

that is, the mesh speed c_ must be greater than the sound

speed which is the greatest velocity at which disturbances

may be propagated from place to place in an elastic medium.

For problems involving shocks and large material velocities,

this restraint is insufficient.

Richtmyer (22) has shown for some cases a more suitable

requirement is

÷ IV�

where V is the material velocity, m_,_ condi _._.. recognize__

that disturbances move with the velocity of sound plus the

velocity of the flowing medium.

In the problem to be discussed, the medium is usually

highly compressed. The flow velocity and the sound velocity

are roughly of the same order of magnitude. The following

approximation, then, is made to the above condition,

In one-dlmenslonal tests, however, this relation prescribed

a mesh ratio which was about five times too large. (14).

In practice, DR and De are fixed and DT is varied to o_j--_*_

requirements for stability. The actual condition used to

check stability is written

3.15
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where U and _/ are the maximum flow velocity components

occurring in the solution and Ro is a typical radius of the

finite difference mesh.

Development of Computer Program

46

The computer code for solving the finite difference

equations was written for an IBM-7090 computer. The size of

the computer was demanded by the requirement that an accurate

numerical approximation of the solution be obtained. Tests

have shown that between fifty snd one hundred divisions are

needed for good resolution in each space direction. In the

radial direction, the net was marked by sixty _ _ T_ _

angular direction, there were initially thirty-flve cells cov-

ering a sector of 45°. The IBM-V090 has a storage capacity

of approximately 32,000 words. Of this storage, about 25,000

words were used for storage of variables for each point of

the finite difference mesh. There were twelve parameters

defined and stored for each fluid cell:

D, Density in the cell.

U, radial velocity.

W, tangential velocity.

E, internal energy.

P, pressure.

Q, artificial dissipation.

CU, radial velocity at time N+ I.

CW, tangential velocity at time N_ I.

CE, internal energy at time N_I.
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A, partial area (if any). NT, a name tag denoting

the kind of cell; (+) for a full, aluminum cell, (-) for a

mixed cell, and (0) for an empty cell.

CD, density in a cell at time N+l.

The computer code was written in FORTRAN and in FAP.

FORTRAN is a high level computer language which, with slight

changes, is acceptable to a wide assortment of large digital

computers. It is not, however, the basic machine language

of any machine and must, therefore, be translated into the

basic machine language of the computer being used. This is

accomplished generally, in two steps; the first being a trans-

lation to a symbolic assembly language, the second being to

assemble the symbolic language program into a basic machine

language program. FAP, FORTRANASSEMBLEYPROGRAM,is the

symbolic language associated with Fortran II. The translation

process required by programs written in FORTRANis less

efficient, that is, produces more instructions, than programs

written in FAP or basic binary machine language. In order to

conserve storage, part of the computer code 'DRAW', developed

to solve the modified flow equations, was written in the

symbolic language. The final program occupied about 6,500

words of the computer's memory.

To solve the difference equations on a 7090, a logical

calculation path must be developed for use by the computer.

This process is illustrated, in a rather general way, by

Figure 7. Calculations are performed for each dependent

variable in each cell corresponding to the directions of the
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i Read in initial values of variables
I and constants of program.

Compute Density, Radial and Tangential
Velocity Components, and Specific
Internal Energy for each cell for
one time increment later than start-
ing conditions.

Compute Q-term and Pressure for every
cell.

Compute change in Partial Areas for
each interface cell. Test interface
cells for cell changes.

Write all computed values, if desired.

Store computed values in initial value
locations.

Figure 7. Computer Flow Diagram



difference equations. Other monitoring is required and per-

formed by the computer code to check the mesh configuration

and impose boundary conditions.

The cycling of the program would be as follows: one

first calculates the values at time N÷ 1 for the whole mesh

using equations 3.1-3.4 for all full and mixed cells. Equa-

tion 3.14 is used to find the new partial area for all mixed

cells. Boundary cell changes are then made if there are any.

The new values of pressure and artificial dissipation are

then found from equations 3.5 and 3.6. After the completion

of a cycle, the results may, or may not, be printed out under

computer program control. The new values for the variables

replace the initial values so that the cycle may begin again.

49



CHAPTERIV

DEVELOPS_ENTAND PRESENTATIONOF SOLUTIONS

The set of difference equations developed and progrsmed

for a computer solution have sufficient versatility to yield a

solution for any srbitr_ry initial values and boundary

conditions. The basic initial value necessary for a solution

is the free space velocity of the incident micrometeoroid.

The physical properties of sluminum under normal conditions

supply the further necessary initial value information.

Boundary conditions must be apwlied to the modified flow

equations to insure the proper representstlon of material-

v_cuum-interfaces and symmetry properties assumed in the

problem.

After obtaining the solutions for six different impact

velocities, the numerical data is reduced by selective

plotting of the space variation of the fluid v_rlables at

different Instants of time. This chaoter presents a survey

of the information obtained by _ng the hydrodynamic

model.

A series of curves illustrntlng the typical behavior of

the pressure, velocity, and density are shown as functions

of space and time. Further analysis of crater growth and

peak pressure decay are _lso portrayed gr_phlcally. The

dominant features of the solutions for all impact velocities

5O



considered _re the appearance of two shock waves _t the

point of initial contact and the formation of a cavity

behind the penetrating projectile. Flow p_tterns peculiar

to the spherical shade of the incident micrometeoroid are

also displayed.
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Initial Values

The basic operation of the finite difference method

consists of moving from the known to the unknown. A

completely specified net at one time is advanced by a small

step in time. The action is then repeated indefinitely to

develop a numerical solution. To start the solution, at

time equal zero, s simple configuration is chosen. Just

prior to the beginning of the calculations, the leading

point of the micrometeoroid is in contact with the semi-

infinite t_r_et. This is called the point of impact and

lies on _n _xis normal to the target. The material velocity

of the projectile is identic_l with its free spsce velocity,

Vo. The material of tDe target is at rest. Both projectile

and target are considered to be inviscid fluids during the

flow that follows the impact. The density of both bodies is

that of normal aluminum. Other fluid parameters such as

the internal energy and pressure, and the pseudo viscosity

are initially zero. Figure 8 illustrates the prescribed

conditions.

In addition to these initial values, further conditions

must be applied during the running of the comouter program.
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Boundary Conditions

Several boundaries appear in the formulation of the

impact problem. E_ch must be subject to s_ecialized

treatment. The region of interest is taken as a sector of

one quadrant (see Figure 8) of a polar coordlnste system

with the variables R acd_. The initial point of contact

is on the axis. The awwlic_tion of this condition is

accomplished by requiring that no mass flow _cross this

axis. A m_terlal-vacuum interface requires specification of

zero pressure on such a line. This is accomplished with

respect to the finite difference mesh by setting the pressure

in a cell containing some aluminum material and some empty

space equal to zero on the side or sides of the cell adjacent

to the vacuum. Apart from this restriction of no a_olied

force, the aluminum-vacuiJm boundaries are free to move and

are moved ss indicated by the velocity of the solid material

in the mixed cell. As m_terial flows out, density cannot be

less than in the original solid. The computer program also

monitors the differencing schemes to orohibit averaging

across an interface. Fluid properties are not averaged

between empty and full cells.

The Solutions

The finite difference method that is described in the

previous chapter, complemented by the necessary initial

conditions _nd boundary soeclfications was used to obtain

53
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solutions for the hydrodynamic model for six different

impact velocities. The numerical results evaluate the

density, the pressure, the specific internal energy, and

the two comDonents of the m_terisl velocity st cell centers;

that is these v_risbles ss functions of R and _ , st discrete

instants of time. The qusntlt7 of numerical dsts produced by

the comouter is enormous. The description orovlded by

the hydrodynamic model is best Dresented in the form of

graphs which show the preceeding vsrlables at selected

Instants ss the ImDsct proceeds in time. The bu_k of the

solutions are presented in a soeclal report, "Two Dimensional

Plots of Solutions for s Hydrodynsmlc Model of Micropsrticle

Impact." This report is available at the Research Foundation

of 0klshoma State University. The following sections give

illustrations of the important results and the nature of the

solutions.

0rgsnlzatlon of Solutions

The six velocities selected for computstlons range from

slighty over the velocity of sound in aluminum to near the

£mstest Oossible velocity of _ mlcromsteoroid in o_t_ _olar

system. The six velocities are:

Case I:

Case II:

Case III:

Case IV:

Case V:

Vo : 5.68 km/sec. _- 17,6_0 ft/sec.

Vo = 15.16 km/sec. = 49,720 ft/sec.

Vo= _3.69 km/sec. = VT,C00 ft/sec.

Vo = 36.00 km/sec. = ll8,C00 ft/sec.

Vo= 47.38 km/sec.- 155,4C0 ft/sec.



Case VI: Von 60.64 km/sec. = 200,900 ft/sec.

A number of initial impact velocities were used in the

calculations in order to investigate differents velocity

re_ions. Since nonlinear equations are used to describe the

phenomena, one sample case cannot be scaled with the

velocity. The orincioles of similitude do not apoly here.

The step by step description of the early progress of

the hypervelocity imwact are first illustrated graohlcally

by profiles which show the v_riation of material velocity

and density along the normal axis of the target st different

times. Two dimensional plots are shown in which a plane

bounded by the axis of symmetry and for _equal to a constant.

The volume distribution of the variables is obtained by

rotating the two dimensional plots around the normal s_is.

The v_lues at an instant of time are shown by lines of

constant density, by isobars, and by arrows that show the

magnitude and direction of the velocity. Since the volume

distributions of all the variables is symmetric _bout the

axis of symmetry, the velocity is entirely contained in the

two dimensional olot.

The illustration_ _resented show the initiation of

shock waves at the point of impact and subsequent dissipation

as Isr_er areas and free surfaces are encountered. Flow

patterns for the pressure and material velocity for Case V

is presented with comments on the chief features. Graphs

of the time history of free surface motion are then presented

for several of the cases considered.
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A 1Ate time difficulty is pointed out in a group of

figures showing constant density fields for Case V. The

resulting disturbance aoD_rently does not move quite

correctly in the lateral direction. This inconsistency can

be traced to fa_lts in the eq_atlon of state used to complete

the governin_ set of parti_l differential equations.

These faults _re orlmarily associated with failure to

include densities below the initial density of t_rget and

micropartlcle.

A final _nalysis is mode, for all six cases, which

traces the raDid dissipation of peak pressure developed

in the target.

Shock Wave Formation __ndDecay

The most noticeable features of the hydrodynamic

solutions are the two shock w_ves which originate from the

point of init!_l contact. Two compressive w_ves of

_poroximately equ_l strength sppe_r soon _fter the start of

the c_Iculations. One moves into the target Pnd the other

into the projectile. The shock w_ve into the micrometeoroid

^_^_ _ *_ _r_nm-m_teri_l boundary _s Anis _efle_ .......

expansion w_ve which races to v,esken the primary shock

w_ve treveling into the t_rget. This orimary wave also

decays ms the are8 it affects increases. As the primary

front penetrates greater distances into the target, more end

more material is compressed which decreases the energy

density in the propagating disturbance.



57

The processes of shock wave formation and subsequent

decay _re illustrated in the first series of graphs in

Figures 9 through 24. To amplify the points of discussion,

shock orofiles, which are curves of function values vers_Js

distance, ere oresented for several fluid variables along e

line near an axis normsl to the terget. The motion of

the fluid is very nearly one dimensional along such _ line.

On the _xis, veri_bles ere functions of the redial distence.

Results for typlcel cases ere t_ken from solutions involvin_

several different imo_ct velocities. E_ch Figure is m_rked

s long the distance scale in units of the micrometeoroid

radius, R. The measurements start from the point of initial

contact, S. In those graphs in which the back edge of the

micrometeoroid or back edge of the fluid material Is

contained, the position is lebeled with the letter B.

The radiel component of the m_teriel velocity is the

first parameter shown for Case III in which the mlcrc-

meteoroid has an i_pact velocity of 9.3.69 kin/see. The

deceleration of the micrometeoroid and the motion of the

target material can be seen in Figures 9 through ll.

Values of th_ _adlal ..^-, ^^ _ 4-,.,. ._.,,o ?._.,_ -I_ t_ms of the

impact velocity at six widely separated instants of time.

The appearance of two shock w_ves is evident in both

parts of Figure 9. The shock w_ve moving into the onrushing

projectile stands slightly below the ooint of initial

contact, S. Tbls shock front is almost stationary since its

progress is retarded by the fast moving mlcrometeorold.
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The primary shock wave propagates rapidly into the target.

This m_terial velocity imparted by the primmry front slightly

exceeds one-half the original free space velocity of the

impinging pmrticle, _nd would increase above one-half _s the

particle becomes smaller _nd sm_ller. A fl_t plate of

_luminum on a semi-infinite slab of aluminum would give

exactly one-half the velocity. (23).

In time, the shock wave traveling to the rear of the

micrometeoroid reoches the bmck edge. It is reflected _s a

rarefaction w_ve. The modification of the primary shock

wave _aused by material expansion is shown in Figure I0.

If the target _nd projectile hsd been of different msterials,

this first reflection could result in a tension wsve

proceeding from the free surface. Since the impact

process started with aluminum on aluminum, no negative

pressures occur.

Further propagation of the shock wave provides _n

illustration of the dec_y of the primary shock w_ve as large

amounts of previously undisturbed _luminum are engulfed.

Ultimately, this shock front will reduce to 8 sound wmve of

v_nishingiy small 8moiitude The hydrodynamic -_^_ A_

not apply to such late stages of the impact and the computer

solution must be terminated before mmterial properties

such as yield strength play an important role• Late time

cslculstlons presenting results still vslld under the

fluid model are shown in Figure ll. The shock has traveled

a great distance, about twenty times the original radius,
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but is still able to compress the material sufficiently to

give a velocity about ten per cent of the initial impact

velocity.

62

Material Velocity Profiles

Similar results are available for Case VI, which

involves the highest incident velocity, 60.64 km/sec. The

labeling is similar in Figures 12 through 15 to that used in

the previous discussion. The phenomenon noted are again in

evidence but occur on a f_ster time scale. Two shock

transitions are apparent in Figures 12 and 13. Free surface

reflection and propagation of rarefaction waves lead to decay

of the primary shock wave. Development and indication of the

geometrical dissipation are shown in Figures 13 through 15.

The vertical scale is changed in the last few graphs to

allow observatior of some detail in the shock wave structure°

Comparison of a few results of Cases III and VI show

some points of dissimilsrlty. The primary shock caused by

the more extreme impact, Case VI, is stronger than that

resulting in Case III. At a point 2OR, the stronger shock

_,i _± compress ma+_o1_ __ o. __h_...... fo_ which the material

velocity is approximately fifteen per cent of the initial

value of the impact velocity, 12 km/sec. This compares

with the ten per cent value, about 2.5 km/sec., marking

Case III at the same distance of shock penetration. The

wake, consisting of flowing material lon_ since p_ssed over

by the shock front and subject to the continuing action of
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rarefaction waves, is also left in a more active state of

motion than for the lower velocity impact case. Further

illustrations of full two dimensional m_teris1 velocity

vectors depicting the gross motions of t_r_et _nd projectile

will be presented and discussed in a later section.

The behavior of the material velocity is unique compared

to the other fluid model parameters. At the start of the

calculation, all aluminum materisl is in its normal undis-

turbed state. The micrometeoroid has initially a very

large material velocity which represents the free space

velocity of the particle. This leads to the distinctive

velocity distributions at initial stages of the impact.

Pressure Profiles

Other fluid parameters, such as pressure or density,

illustrate more _rsohic_lly the growth of the affected

volume which occurs _fter impact. An initial pe_k, slightly

displaced below the point of first contact, indicates the

start of shock w_ve formation. Approximate squ_re wave

profiles show the establishment of two shock waves.

Reflection and propagation of expansion waves from the

vacuum-aluminum boundary, where the pressure is equal to

zero, are again seen to contribute to the decay of the

primary shock wave.

The next series of curves show the pressure as a function

of distance along a line near the 90° axis. The pressure is

given in units of megabars. Each megabar is aoproximstely
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one million atmospheres. Distance is measured in units

R, the radius of the micrometeoroid, from the starting point

of fluid interaction, _ . This series of curves show ssmple

results for Case III, Vo = 23.69 km/sec, in Figures 16

through 21.

Early stages of pressure development are illustrated in

Figure 16. The first results given by the finite difference

scheme are for only s few cells of the mesh _nd must be

interpreted ms contsining oscillations.

Reflection of a strong oressure front from the free

surface will begin soon _fter the time profile shown in

Figure 17-A. This release wave combined with declining

peak pressures at the head of the distrubance can be followed

in Figures 18, 19, and 20. In the pressure curves, there

seems to be a spurious peak at the front of the shock w_ve;

that is higher pressures than would be expected. This is

due in part to the effect of the pseudo viscosity in the

numerical calculation. The value of the coefficients in the

expression for the pseudo viscosity were kept at very small

values, with greater smoothing effects on the flow profiles

being obtained from the structure of the lignite difference

equations. This w_s done to avoid losses in moving the

particle through the cells of the finite difference mesh.

The reduction in value of the oseudo viscosity results in

larger oscillations in the variables, particularly the

pressure and the specific internal energy, than in previous

hydrodynamic calculations. (4,14).



. Figure 16. Pressure Profiles Along Normal Axis, Case III
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. Figure 18. Pressure Profiles Along Normal Axis, Case III
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• Figure 19. Pressure Profiles Along Normal Axis, Case III
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Profiles, such _s those in Figure 19, can also be

affected by irregularities _long lines of the finite differ-

ence mesh away from the normal axis. The change in scale of

the plots of the pressure in Figures 19, 20, _nd 21 reflect

the drastic decay _s the compressive power of the shock

front grows weaker.

75

Density Profiles

The density behavior of the fluid model is quite closely

related to the pressure of the fluid. Complete specification

of the fluid state requires the interns1 energy, the pressure

_nd the density. There is a unique relationship between the

density _nd pressure only at shock points, that is peak value

points, of the difference net. The state of the materi_l

away from a shock front is found on _n expansion _diabat

determined by the peak pressure to which the material h_s

been subjected. Results taken from full field contour maps

are given for the density in Figures 22 through 24. The

initial impact velocity was 5.68 km/sec. This was the

i it_ id d ...... _^_ _^^ T m_lowes_ ve oc cons ere and _s u_±±_ _o_ .......

velocity is only slightly higher than the velocity of sound

in aluminum, 5.63 km/sec. There is some doubt concerning

the validity of the hydrodynamic model at such s low

velocity, but experlmentsl results agree with the values

obtained in the numericsl solutions (23). Pressures on the

order of several hundreds of kilobars are not carried to
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to times wren pressures differ significantly from hydrodyna-

mic pressures.

The density is drawn _s s function of radial distence

on _ line oe_r the axis of symmetry. The density value is

given ms the ratio of meterisl density at a ooint to thet

of normal _lum_num. This low velocity c_se offers one new

feature in the description of hypervelocity impact. The

two shock w_ves are able to propagate further in both

directions when the micrometeoroid is half way into the

target. The projectile moves somewhat more slowly into the

target than in the other csses considered. This can be

interpreted as a greater transfer of energy from micro-

meteorolC to target. A relatively stronger and broeder

primary shock front oropagates into the target. The

somewhat slower decay is also evident in results showing

surface motion during the initial stages of fluid distor-

tion.

Events take place on 8 longer time scale for Case Io

This is in accordance with the much slower imosct velocity.

The results of all Figures are for times reduced from the

radius R = 4.41 x lO-4cm.

The establishment of two shock waves es viewed through

profiles of the material density is illustrated in Figures

22 and 23. A typical one dimension shock profile is seen in

Figure 24 which is for a time after reflection from the free

surface has taken Dlece.



Full two dimension results of the hydrodynamic model

are shown for one case, Case V, in the next section.

Two Dimensional Distributions

8O

The hypervelocity impact of a micrometeoroid on a

semi-infinite target puts the material of the target in

motion and produces _ large scale disturbance of the flow-

ing aluminum. A series of two dimensional maps showing the

fluid pressure and material velocity distribution drawn

from the numerical solutions of the hydrodynamic model are

presented in this section. These curves were drawn for

Case V, in which a micrometeoroid impacts at a velocity of

47.38 km/sec.

A qu_l_tative survey of the features associated with

hypervelocity impact has been given by Charters (8).

This description will be discussed now since the present

solution embodies a number of observed effects.

The imosct is _ccomo_nied by _ fl_sh of light.

Radiation can be observed form the immediate vicinity of

the Imoact. This is not shown by the hydrodynamic equations

since thsy contain no r_di_tion p_oducing mechanism. If

the governing equations ware supplemented by a more realistic

equatlon of state which includes ionization and radiation

energy, _nd changes in the conservation eq_ations, it is

believed that the plasma state formed by the impact would

give radi_tlon.

The shock wsves discussed are observed in high speed
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experiments. One, referred to as the primary shock wsve,

r_di_tes out form the point of impsct, compressing _nd

scceler_ting the m_teri_l of the tsr_et _he_d of the on-

rusb_ing sphere. Another w_ve mo_es bsck into the projectile

opposite to the notion of the projectile. The result of

these two movements is _n _pwroxim_tely st_tionsry shock

front moving very slowly beyond the point of initial contact.

As the b_ck edge of the micrometeoroid o_sses the

posltlon of the origlnsl target, s depression or crster

starts to form• Most of the flow is in _ r_dlsl direction,

but some m_terial moves _round the crster edge _nd is

ejected. These features seen in the l_bor_tory are _lso

evident in the numerical solution• The opening of a c_vlty

_nd the movement of tsrget material _bove the origins l

tsrget surface sre both very striking in the solutions

presented• This escape of msterial occurs in sll six

velocity c_ses c_lcul_ted.

The shock wsve which is reflected from the free surfsce

_s s r_ref_ction w_ve eventually overtakes the primary shock

w_ve. This l_tter w_ve penetrates gre_t distsnces into

_he t_r_et. The exosndlng ci_ste_ follows _t s _-_ ....

Between the two, _ shell of highly energetic mstter,

compressed by the shock snd stretched b_z the r_ref_ctlon,

is found. The strength of the shock wsve decreases _s its

volume of _ctlon increases, _nd _s it is overtaken by rare-

faction wsves originating at the free surface of th_

m_terlal. These festures of hyperveloclty Impact are
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displayed in the hydrodynamic solutions.

Ultimately, the pl_stic and elastic properties of the

target material void the perfect fluid assumptions and the

final size and shape of the crater cannot be fixed. This

difficulty can be remedied by consideration of sn equation

of state describing aluminum snd by investigation of the

trsnsltlon from fluid to elastic flow.

Individual matched distributions of the pressure and

material velocity are given for different _nstents of time

for Case V. The material velocity is portrayed by scaled

vectors reoresentln_ the veloclty of msterlal st the tail

of the vector. Pressure conto_r maps are obtained by

connecting points of equal pressure on different r_dial

lines. Distances are indicated on the normal axis in

units of the mlcrometeorold radius, R. The times shown are

for the typical l0 -9 g_ micrometeoroid. Results for these

two v_rlables are presented in Figures 25 through 44.

Pressure and Material Velocity Distributions

The mlcrometeoroid enters the target quite rapidly. An

early time velocity distribution is shown in Figure 25.

Most of the velocity vectors are parallel to the normal axis

_nd represent the free velocity of the micrometeoroid. The

vectors near the rolginal surface line _nd below this line

are reduced in m_nitude sod oscillate about this direction.

The pressure distribution in Figure 26 shows the highest

pressure attained in this particular impact case. Two
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s_proximately equal shocks will be formed from the pressure

_eak shown. There is some assymetry aoparent in Figure 26

and subsequent plots due to the geome*ry of the entering

projectile and the initial division of material velocity.

The material of the mlcrometeorold has initially hlgb

velocity while the material of the target is undisturbed.

Some general undulations are seen in the contour maps and

may also be discerned by careful inspection of the velocity

distributions. This is caused by the particular choice of

times and points included in the results and by the nature

of numerical solutions.

At a time when _bout one-h_lf of the mlcrometeorold has

penetrated the seml-lnflnite target, the primary shock wave

covers an are_ on the curve ( volume in the mlcrometeoroid)

slightly less th_.n one-half of the micrometeoroid sre_

(volume). This quantitative extent of the primary shock

wave at the mid-penetration point, has been found to v_ry

with the velocity.

The velocity distribution in Figure 27 illustrates the

start of the expansion period of the disturbance. Materlsl

moving from the straight line pa _ _-_ _ .......__-._=_ _,__-

tenfold has been put in motion by the primary shock wave

rather than by direct contact with the projectile. The

maximum pressure developed, in Case V, is twenty-flve

megabars. The extent of this peak pressure is shown in

Figure 28. In an idealized treatment of this impact, the

peak oressure would extend to the sur_qce. Tn the o_nnerlcal

85
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calculetions, however, the motion of fluid particles, is

communicated from cell to cell in the mesh covering the

region of interest. The model chosen probably depicts

the physical situation rather well; the peak pressure

occurs near the normal axis under the maxium thrust

developed by the impinging sphere.

At slightly later times, the radial character of the

fluid disturbance can be seen. The material of the target

has s strong tendency to exo_nd sway from the regions of

direct impact with a material velocity of magnitude aporoxi-

mately one-half the free so_ce velocity of the micrometeo-

roid. The shape of the disturbed portion of the target

material, and the mlcrometeoroid, can be seen from the

pressure distribution in Figure 30. It is near this time

that free surface effects begin to influence the solution.

The indicated irregularity, in Figure 29 and 30, near the

Joining of projectile _nd target is attributed to reflec-

tion between the free surface and expanding shock w_veso

By compressing the material of the target, the incident

particle moves into the target. This continuing action

eventually causes a depression in the orlgln_l target

surface. The shape of the crater, ms seen in Figure 31, is

primarily a result of the geometry of the impinging oarticle

and the effects of the rearward moving shock front.

Velocity vectors corresponding to Vo, the initial impact

velocity, are seen near the point S. This indicates

that some of the original mlcrometeoroid still retains its
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integrity as it oenetrstes the t_rget. A change in radial

scale has occurred at this time; that is, 8 machine

condensation of the finite difference mesh has taken place.

The pressure distribution, in Figure 32, does not make such

a clear distinction between affected snd unaffected materlsl.

The peak pressure has begun to dec_y. It is interesting to

note thst the linit of this oressure distribution, the zero

line determining the progress of the primsry shock wave, is

sn aoproximately circular arc centered at the point of im-

pact, S.

After reflection of the secondary shock wave h_s

occurred along all of the free surface of the micrometeoroid,

t he velocity distribution Is chaoged near the free surface.

All m_terisl of the original projectile has been subject to

shock comoress!on. This material now starts to expand and

an expansion or rarefaction wave oroceeds from the vsc1_um

boundary. The l_rgest velocities sustsined by aluminum are

about forty percent of Vo. Upward motion of the surface

near the edge of the expanding cavity can also be seen in

Figure 33. The corresponding pressure disturbution is

shown in __igu_e 34. "_"*'_^ ,-,-. *_o _op_ n_ _h_ mle_ometeo-,'. v .L_.,_nCC .....................

roid influencing the t_me of release waves can be inferred

from the spacing between the material surface, which is

st zero oressure and the four megabar line.

The velocity distribution, in Figure 38, depicts the

motion of materlsl ahead of the forming crater. Each vector

shown is moving away from the expanding hole. The pressure
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at this time, Figure 36, exhibits one shock wave traveling

in the target. Again, some movement of material above the

original target surface llne is indicated. This is

correlated with the experimentally observed spray ejected

by hypervelocity impact processes.

As the dimensions of the finite difference mesh _re

modified, the time increments used in the numerical calcul_-

tion increase. One result of such computer directed conden-

sstions of the net is that the decay of the primary shock

wave becomes more evident. This csn be seen in both

Figures 37 and 38. As the distance scale increases, the

shock p_rameters decrease. The isobars in Figure 38 disol_y

somewhat less of a radial quality about the point of impact.

Part of this proceeds from the retardation of the disturbance

moving along the free surface of the target. This slow down

results from the ejection of materisl from the tsrget snd

from the failure of the aluminum equstion of stste to

adequately describe the material. This latter point will

be discussed in a lster section°

The flow progresses st l_ter times in the calculations

as shown in Figures 39 _nd 40. The ii_i_egul_rity of the

surface shape changes with time. The perk values of the

shock wave h_ve decayed even more at this time. The peak

pressure in Figure 40, is down to 4 megab_rs. Illustrations

of this type are quite representative of _hock waves

traveling in _n inviscid fluid.

Further cell changes have been made in the time for
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Figure 37. Velocity Distribution, Case V (Time =

8.96 x i0 -I0 seconds)
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8.96 x i0 "I0 seconds)
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Figure 40. Pressure Contours, Case V (Time =

1.52 x 10-9 seconds)
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distributions shown in Figure 41 and 42. The velocity

vectors now indicate some small scale Irregularities near the

free surface and the feeding edge of the fluid disturbance.

The oressure distribution, in Fi_re 42, shows f_irly smooth

curves characteristic of the primary shock wave structure.

The last results obtained in the computer program for

Case V are presented in Figures 43 _nd 44. The t_,o dis-

tributions are terminal only in sn arbitrary sense. They

do not and cannot, represent the final st_es of crater

formation. The deepest p_rt of the cavity is centered

about the impact point. The large _mount of material shown

above the original surface is believed incorrect. The exact

cause and correction of this difficulty will be discussed

later. The peak velocity shown in Figure 43 is less than

ten per cent of the initial impact velocity) Vo . Further

calculations beyond this time would not provide useful

results. A l_r_e part of the affected re_ion is quite turbu-

lent. The peak pressure occuring _n Figure 44 is less

than five per cent of that found in the initial sta_es of

the basic assumptions of this work.

Cavity Formation

The purpose of the study of hypervelocity impact

studies is to enable prediction of micrometeoroid d_msge

to space vehicles. The assessment of such impacts is quite

often done in terms of penetration or crater size related

to initial impact velocity values. The numerical solution
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presented for the hydrodynamic model shows the initial and

middle stages of cavity development. The resolution afforded

by the numerical calculations is indicated in Figure 45.

Cells are shown sketched in near the aluminum-vacuum boundary

aoproximately to the same scale as used by the computer

program. Interface cells, those cells which are partially

empty, are indicsted by shading. More information than

shown is provided by the computer print outs. The fraction

of e_ch cell which is filled with is given for each mixed

cell. This helps in placing the boundary at any one time

step. There is some latitude in oosltioning this line,

but possible errors are less than one-half a cell dimension.

In order to observe the formation of the deoression, a

series of penetration versus time curves are shown in

Figures 46 through 54 for four of the six cases solved.

Such illustrations also give an overall view of the nature

of the solulon obtained.

The mean velocity of free space mlcrometeoroids in the

vicinity of the earth is about 36 km/sec. (2). Case IV

was solved for an impact ofthls velocity. This case

provided more data than any other. Positions of the material

surface are shown for various times in Figure 46 through 48.

The time for each curve is given in each Figure.

The progress of the solution describes the "swallowing"

of the incident particle. The momentum and energy trans-

ferred from the micrometeoroid to the target compress the

aluminum and cause the msterial to move into the target
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Figure 45. Pressure Contours, Case IV (Time =

.691 x I0"9 seconds)
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Figure 46. Position of Surface at Various Times, Case IV



III

$

III

I. Time- 1.0:5 X I0 "e sec.

II. Time I I.:37 X I0 -° sec.

III. Time - 1.79 X I0"e sec.

Figure 47. Position of Surface at Various Times, Case IV



112

)II

III

S

2R

4R

6R

Vo - 56.0 km./sec.

I. Time- 2.14 X I0 -e sec.

II. Time -4.24 X I0 -e sec.

lU. Time--5.95 X I0-e sec.

SURFACE

Figure 48. Position of Surface at Various Times, Case IV



113

forming a depression.

The initial motions of t_rget and micrometeoroid are

followed in Figure 46. At the latest times shown, material

from the target is squeezed out by the disturbance of the

micrometeoroids entrance. The cavity formation and ejection

of material proceed in Figure 4V.

The shape of the cavity assumes a more conical shape

r_ther than the first noted radial symmetry about the point

of contact. The curves shown in Figure 48 bear out this

statement, although the deepest portions of the cavity are

on a radial arc about S. The amount of material shown above

the target surfsce is now very large. This difficulty arises

in the following way. The finite difference mesh is not

able to follow the motion very precisely at large distances

behind S. The largest single cause of this accumulation of

m_tter is the failure of the _ umin_m equation of state to

desc.-ibe states of ter_sion. _s _een from the _umerie_i

solution there is a strong tendency, evident in the graphs,

for some target material to flow _way from the entrance path

of the micrometeoroid. This activity corresponds to the

spray observed in hypervelocity cratering experimer, ts. It

is probable that the material expsDds to such states in

which the density is less than that of normal elu_in'_m_.

The equation of state, however, only allows states of com-

pression or, at least, zero pressure. The density is

required to be equal to or greater than normal density.

This provision leads to sn impasse near the distorted
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portion of the surface where it is probable that densities

less than normal would be seen. The shock wave moving in

the lateral direction cannot propagate as freely as the

pressure front penetrating along the normal axis. At the

latest times, such as positions shown in Curves II and III

of Figure 48, this fault leads to oroduction of excess

mass and energy in the fluid field.

Experimental data pertinent to high tension states of

aluminum is not immediately available. It is hoped that

future work will provide a more realistic equation of state.

The present expression used is built up of curve fitting

approximations valid only in specific regions. Substitutions

of densities less than normal lead to results which are not

physically acceptable or consistent.

The results for velocities of impact velocities greater

than 36 km/sec, are quite similar to those just presented.

Calculations for Case V, Vo z 47.38 km/sec, are shown in

Figure 49. Calculations for Case VI, Vo - 60.64 km/sec.

ere given in Figures 50 through 53. Again, the accretion of

material above the target surface prevents some of the

freedo_ of motion expected. Also, if the mass were less,

the velocity of ejection would be higher than shown in the

present calculations.

Similar time traces for the lowest velocity considered,

Case I in which Vo _ 5.68 km/sec., are available and are

different from the high velocity cases. Such curves,

together _ith corresponding pressure distributions,
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Figure 49. Position of Surface at Various Times, Case V
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ll7

SURFACE

IR II

Ve = 60.64

I. Time =2.10 X

II. Time = 2.65 X

III. Time =3.30 X I0 -4° sec.

km./sec.

I0 -== sec.

I0 -m sec.

III

1.5R -

Figure 51. Position of Surface at Various Times, Case Vl



118

S

4R
III

SURFACE

Vo - 60.64 km./sec.

I. Time -4.26 X I0- _ sec.

II. Time- 8.21 X I0 -m sec.

III. Time - 1.34 X I0 -° sec.

Figure 52. Position of Surface at Various Times, Case Vl



ll9

I
I
I
I

o

_ ilmml,allmaml_

Fisure 53. Position of Surface at Various Times, Case VI



120

are interpreted to indicate a shallower depression. The

irregularity of the surface positon curves is quite

noticeable. The l_st curve shown, however, in Figure 54,

is completely r_dial from the point S to the original t_rget

surface line

Density Distributions

A slightly different view of the impact and a further

study of the effects of the equation of state are given by

a series of graphs of constsnt density contours. These

illustrations were drawn in the same manner ss the pressure

distribution. Results for density distributions for Case V,

Vo _ 47.38 km/sec, are shown in Figures 55 through 59.

Density values result from solutions of the continuity

of mass equation. Such values together with the internal

energy determine the pressure in the hydrodynamic model.

At peak pressure snd peak density points, however, a shock

process is occuring and the equation of state applicable is

the Hugonlot curve. Such a relation is aDp_rent at e_rly

times in the numerical solution where all disturbances are

e_sent!_lly by _bock compression.

In the first stages of micrometeorold penetration, the

density behaves much llke the pressure. A peak is formed

slightly below the original point of contact. This peak is

then broadened into two approximately equal shock wsves.

The propagation _nd reflection of these two fronts proceeds

as discussed previously. Illustrations of the density
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variption are found in Figures 55 and 56.

_steri_l is first seen above the t_rget srufsce in

Figure 57. It is st this time that the condition requiring

the density r_tio to be equal to or _re_ter than one is

first invoked. Material which leaves the target is orobably

in the form of s fine spray. The average density of this

spray, comoosed of some material clusters and some vacuum

between, is undoubtedly less than that Of norm-ol aluminum.

In failing to adequately describe such states, which would

h_ve a negative pressure, the equation of state blocks the

motion of the shock w_ve in the direction prependiculsr to

the axis of impact.

The penetration orocess continues _s the oesk density

decays. Further results of the numerical solutions are given

in Figures 58 _nd 59. The disturbence, in Figure 59, has

advanced _lon_ the t_rget surface to s ooint seventy-fi_Je

oer cent of its oenetr_tion along the normal axis. Vhile

some of this reduction in lateral expansion follows from

the finite size and shaoe of the individual micrometeoroid_

that is, because of its exolosive entrance into the target;

the expected flow patterns are not fully developed. A

retarding mass has appeared in the solution where material

composed of aluminum which should have been ejected with a

high velocity and low density is found°
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Dissipation of the Peak Pressure

A f_]rther set of curves emphssing pressure decay have

been prepared for six cases. These _re presented in

FiFures 60 throuFh 65. This group is sho_,n in order to

illustrate the rapid dec_y of the De_k pressure. These

pe_k value dissiDPtion traces also permit correlPtion

with exDeriment_l d_t_ _nd other theoretical cs!cul_tionso

The curves _re dr_vJn ]_siny_ the _Droxim_te Desk

Dressure _!onf_ the norm_l axis versus the position of this

function on the norm_l _xis. There is some uncertainty con-

cerning the exact point to _oint comparison, but the

aw_rsge curves yield a satisfactory indication of the decay

rate. Distance along the axis is measured in units of

the micrometeoroid radius, R, from the point of impact, S.

As R increases, there is some uncertainty in interpretin_

the pe_k pressure _nd the l_r_e scale of the dra_,ings seems

to indicate _ decay to _ constant state. This is not

observed in the results ss c_n be verified by reference to

full _ressure distributions.

For the c_se of _n im_'_ct -'^_i +_- _ sa km/sec.

sufficient information _ms obtained from the numerics i

solution to indicate the rrov_,th to _ _e_k pressure of 19

mes_b_rs _nd the subseqvent dec_yo This v_!ue is fo_nd

i_ other shock propagation c_Icul_tions (4, 14)o The decay

curve for C o -- o os,_e IV, Vo - 36 km/sec is shown in Figure 60
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Results for other cases are the same ty_eo Dissipation

of Desk pressure for Case ¥i, V o _ 60.64 km/sec, is shown

in Figure 61. Such curves give an indication of the

transient nature of the peak pressures which occur in the

_mpact process. These peak pressures, however, determine

the subsequent states of the affected target material and

ultimately the crater size _nd terminal mech_nismso Each

dee_y cnrve is _iquely determined by the _rticul_r _mpsct

velocity.

Results _re ccn_irnaed in Fi_res 63 _nd 64 for two more

impact velocity c_se. C_se I, in which V o _ 5o6n km/'seco is

somewhat different from the other _ses. T]_{_re is _ mt_ch more

_r_duml rise _nd f_ll in the dec_, _ n_:r_e° The v_]_e _<:_e-

dieted is Pbout eq,ml to _ T_]_te on _o ,_]_minum t_,r_et.

(o$). The lon_ oersistonce time of t!e r_e_k r)re.._s_,_rewo_id

explsin why z_crir'_er;t_ b:-_ve been :_o e_Tr, ct on _-'<':,o__t_r_F

impnct ve]oeitv versL_s oe_k pressure. Sinre t},e t_me

chsnges with the size of the _ro]ectile_, l{,bor_tor?l s_moie

dimensions would m_ke the _]e_k Dross<it,,--,u]oI:e s_sce<,,tible

to _ constant v_lue pemk Dresst_re me_st_remento

The correlstion of pe_k oressure with otbe_' ir.-o_ct

properties implies s rel_tiveiy sep__r_te_ in_tinl sbocko

The chsracteristic v,_ri_t[on of tb_s ,q_'_ntitv ,__.t},imo_:_ct

velocity _nd _n ex_Inn'_t-_on for high o_d low _e]oci_ _

_ressure dissio_t_on curves _r _ il]_t,r_Cc'_ in !_'i_ure 66

This plot essenti_lly rel_tes the ._q,_o_ntof ener_zy cr:_n_;°,,rr_

from micro_rticle to t_r_et _,.,_ont_e _,_rt-_']e ].s _].!
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embedded in the target. The general trend agrees with

results obtained from previous treatment which considered

an impact by an incompressible micrometeoroid which pene-

trates only h_lf-way into the target _4).

Discussion of Results

Six different ceses were solved with sn IBM 7094

computer. Esch c_se involved a different impact velocity.

This is necessary since the principles of similitude are

not applicable. A number of features are common to the

solutions. Difference hsve been fo_nd between high and low

impact velocities.

The most interesting festure of this project is the

production of two distinct shock waves at the point of

initial contact. Both shock wsves are of _ooroximately

equ_l strength traveling in opposite directions° There is

some _symmetry in the forward direction, however; the

primary shock front is somewhat stronger since it moves

into undisturbed m_teri_l. The progress of such w_ves is

followed for sll csses until free boundsry reflection of

one wave and considerable d_c_y of th_ primary shock

front modify the flow pstterns. The start _nd growth of

the crstering process hsve been fully depicted. A complete

description must be found in other material regimes, such

as the pl_stic and el_stico

Defects in the aluminum equstion of state used have

been pointed out in sever_l plsces in this work. 0riginslly,
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the equation of state was develooed in order to extend

experimental data to ultra high pressure regions° Considers-

tion of very low pressure and tension states need not be

considered until later sts_es of the numerical cslculstionso

The errors proceedin_ from this fs_It are localized near the

target surface and probably do not invalidate the results

obtslned near the normal sxiso Such results indicate the

formation of _ deoression soproxim_telv circular with resoect

to the Doint of first contscto
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CHAPTER V

SVMMARY AND SUGGESTIONS FOR FUTURE WORK

Calculations for the impact of a spherical aluminum

microparticle on a seml-inflnite aluminum target at six

different velocities have been presented° A numerical

method was developed and tested for the solution of a set

of Eulerlan, dimensionless, equations which were modified to

describe large-scale fluid distortions° These distortions

include shock wave propagation and target motion° A FORTRAN

computer program has been used to obtain solutions for all

cases up to a time when the decay of the primary shook front

is significant and the resulting crater is well f_rmedo

A baslo feature of these solutions is the formation of

two shock waves at the position of initial oontaot of micro_

particle and target. One shock front, the primary sho3k wave_

travels into the target compressing material of the target°

The other, moving into the projectile_ is refleoted at the

material-vacuum boundary. The resulting rarefaotlon wave

eventually overtakes the primary wave and weakens ito Another

feature noted in all curves depicts the formation of a crater

and the ejection of material above the original target s,&rfa_o

The impacting microparticle appears to compress the target

material ahead of and surrounding itself° This results _n

139



4,

the flow of the target material up, around the entering

particle and out of the target.

As the disturbance engulfs more target material, the

hydrodynamic pressures become comparable to yield stresses°

It is then inappropriate to neglect material strength and

the hydrodynamic model becomes inapplicable° This same

difficulty occurs earlier near the free surfaces involved

in the problem. Consideration of necessary descriptive

equations of the plastic and elastic states in addition to

the hydrodynamic state will give a more complete description

of micrometeoroid impact°

It is believed that inclusion of plasma properties in

the equation of state, and addition of plasma conservation

equations to the modified Eulerian set, would explain the

radiation observed in the impact process°

These extensions, the refinement of the hydrodynamic

model to include plasma, plastic, and elastic material

should lead to a better understanding of the hypervelocity

impact problem.
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